我校 ESI 学科排名动态快报 (2020年1月)

我校 ESI 学科排名情况

据 2020 年 1 月 ESI 数据库更新结果显示,我校材料科学、化学、工程学及计算机科学 4 个学科进入了 ESI 全球机构学科排名的前 1% (ESI 前 1%)。详情见表 1。

表 1 北京科技大学进入 ESI 前 1%的学科及全球排名(2009.	01.01~2019.10.31)
-------------------------------------	-------------------

学科名称	发表论文数		总体被引频次数		篇均被引频次		各学科进 入全球前
子科石柳	数量	排名	数量	排名	数量	排名	1% 的机构 数量
材料科学	9,994	10	103,630	54	10.37	821	916
化学	3,520	201	51,956	278	14.76	862	1,298
工程学	3,156	163	28,469	200	9.02	980	1,535
计算机科学	825	206	6,779	262	8.22	356	481
所有	21,576	418	226,855	691	10.51	5,433	6,415

高被引论文学科分布

本期我校共有高被引论文 263 篇,比上期增加了 21 篇。表 2 中具体列出了各学科高被引论文数量,其中工程学科 72 篇,位居第一;材料学科 71 篇,位居第二;化学学科 51 篇,排在第三;计算机学科 25 篇,排在第四。除以上优势学科外,物理、数学、生物学与生物化学、动植物学、环境/生态学、药理与毒理学、经济学与商学等学科亦有贡献。

表 2 我校高被引论文学科分布

序号	学科名称	高被引论文数(篇)		
1	工程学 72			
2	材料科学	71		
3	化学	51		
4	计算机科学	25		
5	物理学	14		
6	数学	13		
7	生物与生物化学	4		
8	动植物学	3		
9	环境/生态学	2		
10	药理与毒理学	2		
11	经济学与商学	2		
12	一般社会科学	2		
13	地质学	1		
14	微生物学	1		
合计		263		

本期热点论文

ESI-Hot Papers (热点论文)是指近 2 年内发表并且在最近 2 个月内被引用次数进入所属 学科领域前 0.1%的论文。本期 ESI 数据显示,我校有 10 篇文章入选全球热点论文行列。10 篇文章分布在材料科学(4 篇)、工程学(4 篇)和化学(2 篇)3 个学科。其中,自动化学院 3 篇,化学与生物工程学院 2 篇,冶金与生态工程学院 1 篇,能源与环境工程学院 1 篇,材料科学与工程学院、新材料技术研究院和新金属材料国家重点实验室贡献 3 篇。

表 3 我校热点论文学科及学院分布

标题	学科领域	出版年	二级单位
OVER 14% EFFICIENCY IN POLYMER SOLAR CELLS ENABLED BY A CHLORINATED POLYMER DONOR	材料科学	2018	化学与生物工程学院
NEXT-GENERATION NARROW-BAND GREEN-EMITTING RBLI(LI3SIO4)(2):EU2+ PHOSPHOR FOR BACKLIGHT DISPLAY APPLICATION	材料科学	2018	材料科学与工程学院
OVER 16% EFFICIENCY ORGANIC PHOTOVOLTAIC CELLS ENABLED BY A CHLORINATED ACCEPTOR WITH INCREASED OPEN-CIRCUIT VOLTAGES	材料科学	2019	化学与生物工程学院
ENHANCED STRENGTH AND DUCTILITY IN A HIGH- ENTROPY ALLOY VIA ORDERED OXYGEN COMPLEXES	材料科学	2018	新材料技术研究院;新金属 材料国家重点实验室
UNIFIED ITERATIVE LEARNING CONTROL FOR FLEXIBLE STRUCTURES WITH INPUT CONSTRAINTS	工程学	2018	自动化学院
SHAPE-STABILIZED PHASE CHANGE MATERIALS BASED ON POROUS SUPPORTS FOR THERMAL ENERGY STORAGE APPLICATIONS	工程学	2019	新材料技术研究院;材料科 学与工程学院
COOPERATIVE ADAPTIVE EVENT-TRIGGERED CONTROL FOR MULTIAGENT SYSTEMS WITH ACTUATOR FAILURES	工程学	2019	自动化学院
BOUNDARY ADAPTIVE ROBUST CONTROL OF A FLEXIBLE RISER SYSTEM WITH INPUT NONLINEARITIES	工程学	2019	自动化学院
DESIGN OF SINGLE-ATOM CO-N-5 CATALYTIC SITE: A ROBUST ELECTROCATALYST FOR CO2 REDUCTION WITH NEARLY 100% CO SELECTIVITY AND REMARKABLE STABILITY	化学	2018	冶金与生态工程学院
ATOMICALLY DISPERSED MOLYBDENUM CATALYSTS FOR EFFICIENT AMBIENT NITROGEN FIXATION	化学	2019	能源与环境工程学院

北京科技大学图书馆 2020 年 1 月 13 日